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Uncorrelated random networks
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We define a statistical ensemble of nondegenerate graphs, i.e., graphs without multiple-connections and
self-connections between nodes. The node degree distribution is arbitrary, but the nodes are assumed to be
uncorrelated. This completes our earlier publicafiehys. Rev64, 046118(2001)] where trees and degenerate
graphs were considered. An efficient algorithm generating nondegenerate graphs is constructed. The corre-
sponding computer code is available on request. Finite-size effects in scale-free graphs, i.e., those where the
tail of the degree distribution falls lika™#, are carefully studied. We find that in the absence of dynamical
internode correlations the degree distribution is cut at a degree value scaling”likeith y=min[1/2,1/(8
—1)], whereN is the total number of nodes. The consequence is that, independently of any specific model, the
internode correlations seem to be a necessary ingredient of the physics of scale-free networks observed in
nature.
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[. INTRODUCTION mathematic$7]. It turns out, however, that most large graphs
one encounters in applications are not covered by this theory.

This paper is a direct continuation of Rgf]. The impor- The access—relatively recent—to the corresponding data
tance of defining statistical ensembles of random graphs iffiggered a rather intense activitgee Refs[8,9] and refer-
order to understand the geometry of wide classes of network@nces therein
independently of any specific model was emphasized there. Networks are also interesting considered from a broader
Concepts borrowed from field theory were used to define th@erspective: it is useful to represent the architecture, so to
ensemble of uncorrelated graphs, and an algorithm genera§2y the skeleton of many complex systems by an appropriate
ing such graphs was proposed. The general philosophy of otetwork. Hence, graphs are in a sense a gateway to the
approach was illustrated by focusing on a graph suben'fh_eOf){ of complex systems, an exciting and promising new
semble, namely, on an ensemble of connected trees with @rection of research.
scale-free degree distribution, where a number of hopefully The plan of this paper is as follows: In Sec. Il we recall
interesting analytic results could be presented. But it shouldhe definition of the ensemble of uncorrelated random graphs
have been obvious that the adopted framework is of mucRnd we discuss the algorithm generating the graphs. In Sec.
broader applicability. Actually, we have explicitly stated that !l we present the results of a sample of computer simula-
our algorithm generates efficiently not only trees, but alsdions, aimed to help understanding finite-size effects. The
so-called pseudographS, called degenerate graphs ||ﬁRef latter play avery important role as soon as the degree distri-
However, we have also indicated that we encountered profution has a fat tail. We explain the behavior of the data
lems dealing with simplé.e., nondegeneratgraphs. Hence Using an analytic argument. We conclude in Sec. IV. For
the discussion of these nondegenerate graphs was postponé@finiteness, we consider undirected graphs only, as in Ref.
We are now returning to the problem of defining the statisti-11]-
cal ensembles of networks, which in the meantime has at-
tracted the attention of other researchés5| (at this point Il. DEFINING THE ENSEMBLE
is it fair to mention also Ref.6], an early paper on uncorre-
lated graphks

Although some overlap with Refl] is unavoidable, if
this paper is to be self-contained, we would like to reduce th

Let us recall the construction proposed in Rf]. The
partition function for the ensemble of random graphs is writ-
den as the formal integral defining a minifield theory

overlap to a minimum. The reader is invited to consult Ref. . o
[1] when he finds the discussion of this paper too sketchy. Z:f °°d exol = — 22\ + n 1
We shall not dwell much in introducing the subject. Let us — @ ex K ¢ gngl Pad”| (- (1

recall that a graph is just a collection of nodegrtices

connected by linkgedges. It is a mathematical idealization It will be seen that the non-negative constamiscorrespond

representing the various networks one encounters in naturty the degree distribution, while the auxiliary constamts,

in social life, in engineering, etc. Quite often the pattern ofand « control the dependence @fon the number of nodes,

connections between nodes looks fairly random. The concepinks, and loops, respectively. The integral does not exist, but

of a random graph emerges quite naturally. Z can be treated formally as a generating function in the
Random graphs are interesting in themselves. There existSaussian perturbation theory. The main idea is to expand the

a classical theory of random graphs, a beautiful piece of purexponential under the integral in E@.) in powers ofg,
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g In the following, we always work with graph ensembles
1+ P 2 Pne" whereN andL are fixed. Hence, up to an irrelevant factor,
" the weightw of a labeled graph that is nondegenerate, i.e.,
such that nodes are neither multiply connected nor connected
, (2)  to themselves, is just

N

to get a series iy with well defined coefficients, viz. inte- W~ _Hl P! (4)
grals with the Gaussian measure of integer powerspof .

Each such integral is equal to a sum of contributions, whichp, the presence of degeneracies one has to multiply the right-
can be represented graphically by the so-called Feynman digyng side(rh9 of Eq. (4) by the factorS™* appearing in Eq.
grams[10]. We have explained in Refl] how such a dia- _

gram emerges, using a particular example. We do not have  gquation(4) gives the weight of a microstate. Notice the
enough space to develop the point in more details. For thosg,ctorized form and therefore the absence of nontrivial, dy-
readers who are not conversant with field theory techniquegmical correlations. Notice also that with the chojee

we list the rules for constructing and calculating the Fey”'oc(const)‘/n! all nondegenerate graphs with the samand
man diagrams corresponding to the term of or@ég") in L are equiprobable, because

Eq. (2).
Each diagram habl labeled nodes. One should draw all
topologically distinct diagrams, distributing degrees among ; nj=2L. 5)

nodes in all possible manners and connecting nodes pairwise.
Self-connections and multiple connections between nOde’fhus with a Poissoniap
) n

are allowed. Notice the similarity with the Molloy-Reed con- o camble of Erte and Reyi. The ensemble under discus-

struction[11]. With each diagram is associated a numbergiq, is the most conservative generalization of the classical
called the Feynman amplitude, determined by the followinGe,gemple to the case of an arbitrary degree distribution.
rules: each node of degreecontributes a factord/ x) p,n! At this point the statistical ensemble is basically defined.
and each link co_ntrlbute_s a factem.. There is a symmetry However, in this paper, we wish to focus on nondegenerate
_factor 1/2 associated with every line co_nnectlng a node t%raphs, which are the primary objects in graph theory. They
itself and a symmetry factor ! associated with every cqorrespond to a subensemble of Feynman diagrams. In the
m-tuple connection between nodg?]. There is also a fac-  conyentional applications of field theory no specific recipe is
tor Zo/N!, the factorial being a remnant of the expansion offormylated to single these diagrams out. Such a recipe is,
an exponential and, being the value of the Gaussian inte- however, needed here. Otherwise our definition of the en-

one recovers the classical graph

gral. , , y _ semble would be too vague to be useful in applications.
Finally, the series representation of the partition function  gefore going farther let us outline the strategy we shall
reads follow: as stated above, our goal is now to complete the

definition of the ensemble by the construction of an algo-
gN 1 N rithm generating nondegenerate graphs. But we do not
Z=2,>, mKL_N)\"E —DH Pn 1!, (3)  achieve this goal directly. First we construct, following Ref.
LN o' S(B)j=1 [1], an algorithm generating graphs that are degenerate. Then
we show that the ensemble of these degenerate graphs is
where one sums over labeled diagraMshaving a fixed isomorphic, as far as the degree distribution is concerned, to
number of nodes and links, respectively,andL. S(D) is  the known model of balls-in-boxd44]. Using this mapping
the product of factors 2 and factorials associated with selfof one model on another we conclude that asymptotically the
connections and multiple connections ands the degree of degree distributiorP,, in the ensemble of degenerate graphs
the jth node. One can show that the analogous series fdg justp,:P,—p, for N—~. Since we suspect that in this
logZ receives contributions of connected diagrams only. Inlimit the degree distributions are the same for degenerate and
this case the expansion in powersfs a loop expansion: nondegenerate graphs, we impose the appropriate constraint
the leading term corresponds ko=N+1 and comes from on the algorithm and perform a sample of computer experi-
tree diagrams, the next term comes from one-loop diagramsnents, to be described in Sec. Ill. The results might seem
etc. surprising at first sight, but a clear picture eventually
Our idea is to identify the Feynman diagrams of the toyemerges when we estimate analytically, in the ensemble of
model defined by Eq(1) with the graphs of a statistical degenerate graphs, the likelihood that a node is neither self-
ensemble. Indeed, Feynman diagrams are identical to graphm®r multiply-connected.
familiar to network community people, except that there are In a growing network model the construction of graphs is
definite rules to calculate the corresponding weights. Theecursive and mimics a real physical process. In a static
minifield formulation enables one to summarize compactlymodel like ours one does not refer to any physical process.
the content of the model and has also the advantage of beifn ensemble is defined and the relative frequency of oc-
a good starting point for analytical calculations, like those ofcurence of distinct graphs is fixed: If grapAsand B have
Ref. [1]. weights P(A) and P(B), respectively, then they should be
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generated with a relative frequency equal ROA)/P(B). (Mt 1)!pp, +2(Nj—1)!py -1
Naively, one could imagine generating graphs uniformly in P.(A—B)=min] 1, | | '
the space of graphs, accepting grajtsay, with probability M P, Ny Py -1

P(A). However, such a uniform sampling is in practice very
difficult to insure. Furthermore, in an ensemble of very many
graphs the acceptance rate of the naive algorithm would be
very small, since the normalized weight of any given graphwhereR(n)=p,/p,_;. Whenn;=1, the attempt is rejected,
is rough|y Speaking of the order of the inverse of the numbefO that nodes with zero degree are never created. NOtiCG, that
of graphs. A clever idea is to introduce an appropriatewe directly sample links to be rewired. The graphs produced
random walk (Markov process in the space of graphs, Dby this algorithm are in general degenerate and multiply con-

.. —=A— A 1—Aso— . .., which performs an impor- nected. It turns out that the detailed balance condition and
tance sampling. The random walk is driven by the Markov-the way of sampling links insure that the symmetry factors in
ian transition matrix°(A—B). One can easily show that if the weights of degenerate graphs come out correctly.

the transition matrix fulfills the detailed balance conditon =~ The presence of the facton{+1)/n;, on the rhs of Eq.
(9) means that the rewired nodes are sampled independently

_ of their degreg15]. Furthermore, the rewiring depends on
P(A)P(A—B)=P(B)P(B—A) © the node degrees only and is insensitive to the rest of the

i L underlying graph structure. Hence, as far as the distribution
the frequency of the configuratioh in the Markov process ot node degrees is concerned, the model is isomorphic to the

is proportional toP(A), provided one has moved away \ye|| known balls-in-boxes modélL4], defined by the parti-
from the initial configuration. There are maRfA—B) ful-  ion function

filling the detailed balance condition for a given probability
measure{P(A),VA}. One is free to choose any one. The
simplest and popular choice

=min{1,(n+1)R(n,+1)/n;R(n))}, 9

ZOC{%} pnl' : 'pnN5

N
M—> nj> , (10)
j=1
P(A—B)=min{1,P(B)/P(A)} 7)

and describingv balls distributed with probability,, among
is usually referred to as the Metropolis algorithi@8]. The N boxes(in our caseM =2L). The constraint represented by
general idea of the method is problem independent. Howthe Kronecker delta on the rhs of E.0) is satisfied “for
ever, the choice of the proposed new configura@omiven  free” whenN— « by virtue of Khintchin’s law of large num-
the current ond\, is made by taking into account the particu- bers, providedn)==.,np,/=,p,=M/N. The finiteness of
larities of the problem at hand. Usually one proposes tqn) is always tacitly assumed in this paper. Hence, when the
change only slightly a small number of parameters in thdast condition is met the occupation number distribution of a
current configuration. This insures a reasonable acceptangingle boxP,,— p, for N— .
rate and minimizes the risk of performing time consuming Consequently, in the statistical ensemble, including de-
calculation for nothing. generate graphs, the degree distribution becoppessymp-

The transitionA—B logically involves two steps: one totically when the number of links is set to
proposesB among all candidates and one accepts the pro-
posal with a certain probability. One can wrR§A—B) as a 1
product of the probabilityP, of choosing a particular candi- L==N(n). (11
date and of the probability?, of accepting it:P(A—B) 2
=P, (A—B)P,(A—B).

Our algorithm[1] works as follows. In the current con- When this condition is not met, the asymptotic degree distri-
figuration a random oriented linkj, the candidate for rewir- bution differs fromp,,, which is, in a sense, renormalized. In
ing, is chosen. This is done with the probability 1/2Then  particular, wherL is smaller, this distribution ig, times an
we select a vertek, with the probability 1. The proposed ~exponentially falling factor. Whet. is larger the situation
move consists of rewiringij into ik. Thus, P(A—B) deperlcli?s on the shape pf. When the latter is scale free,
=1/2LNP,(A—B), and similarly forA<B. Inserting this Pron”” for largen, the distribution isxp,, except that an

into the detailed balance condition and dropping the factorg):ra sinhgular node with dc_iegree gf OrI@(Nh) _shﬁws up. ‘
1/2LN, identical on both sides of the equation, we obtain These p enomena were discussed at length in the context o
the balls-in-boxes mod€l14], and also in our preceding

work [1].

So far, only an algorithm generating degenerate graphs
has been constructed. It is trivial to convert it into an algo-
which has the Metropolis solution fd?,(A—B). Now, we  rithm producing nondegenerate graphs. It suffices for that to
use the fact that, according to Ed), P(A) is a product of add before the Metropolis test a few lines of code checking
the node weightg,n!. Furthermore, we observe that the that the nodes andk are neither identical nor linked. How-
rewiring changes,—n,+1 andn;—n;—1 only, leaving ever, this check introduces a bias and it is not obvious what
the degrees of other nodes intact, to get will be the degree distribution at finit.

P(A)P,(A—B)=P(B)P,B—A), (8)
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FIG. 1. The approach towards the limiting rectangular shape of ] e

the calculated connectivity distributid®,: N= 100 (squaresand 10 10
1000 (circles. The figure illustrates the claim that finite size cor-
rections fade away rapidly when the input connectivity distribution
has a finite support.

FIG. 2. The evolution withN of the average maximum degree of
a graph forg=2.1(circles and 3.0(squaresandN = 213218 This
log-log plot illustrates the observation that for scale-free graphs

L . . with the exponentB approaching 2, the maximum node degree
A priori, the Metrppolls test should |n§ure that the numberevolves withN at a rate close to that observed &+ 3, in variance

of n,Odes of degrea s close tC,)N pﬂ_’ provided the |aSt_ num- with Eq. (12). An analytic argument explaining the observed behav-

ber is large enough. And for fixetlit can be made arbitrarily jor js given in the text.

large with a proper choice df. Hence, a possible deviation

of the degree distribution fronp, should be a finite size this example to illustrate a behavior which, as we shall argue
effect disappearing in the limNl— o when the coupling®,  in a moment, is generic. Since the same choice was made in
are defined on a finite support. However, one has a problemef. [1], the reader can directly compare the results obtained

whenp, has a fat tail. _ N in the two ensembles studied.

Let the degree distribution fall I|kB_’B, B>2 For finite The maximum node degre@max has been measured in
N it cannot fall like that indefinitely, there is a natural cutoff |ong runs. The results, fgg=2.1 and 3.0, are shown in Fig.
scaling as 2. The important point is that the rate of increasengf,

(12 with N is almost the same for the two values ®f contrary
to what one can read from the rhs of Efj2). The exponent
The argument is well known: the expected number of node# Slightly below the value 1/2, expected asymptoticadiye
With N> N iS less than unity. The presence of this cutoff below). The autocorrelation time increases roughly at the
was used by Dorogovtseat al. [16] to explain why the ob- Same rate, from about 860810 to 5460(10300 sweeps
served scale-free networks are always characterized by far 8=2.1(3.0); in a sweep one attempts to rewire all the
relatively small. links of t_he graph. The fraction of nodes and links belonging
Hence, coming back to the algorithm, there is always 40 the giant component decreases \ﬁry slowly from about
range ofn where fluctuations in the number of nodes are0Q-57 and 0.780.68 ang 0.8Lat N=2""to 0.55 and 0.77
very large. Increasingl does not help. Now, if certain fluc- (0.68 and 0.8latN=2=. _ o
tuations are systematically favored by the constraint exclud- 1he shape and the evolution with of the degree distri-
ing degeneracies, then the resulting degree distribution capution is shown in Figs. 3 and 4. It is manifest that the
strongly deviate from the input weights,. We dedicate a distribution does approach the expected limit. However, the

Nmae NYE1),

separate section to the discussion of this problem. approach is very slow and nonuniform, especially f®r
=2.1. The results of the computer experiment can be under-

lll. FINITE-SIZE GRAPHS: DEGREE DISTRIBUTION stood using the following heuristic arguments.
Let us first consider a case where the supporpgfis P,

finite, in order to check that in this case the problem is in-

deed under control. We perform a numerical experiment, set- 1072

ting for definitenesp,=1/10 for n=<10 andp,=0 other- “ e

wise, whileL=2.75N as dictated by Eq(11). The result is 10° SN

shown in Fig. 1: as expected, the convergence of the degree |
distribution towards the input one is very fast. 1

Our next experiment is with scale-free graphs. As in Ref. 100 | I \
[1] we set[17] }

2 .
1 2

10 10° n 10

r'(28-3)(n+p-3 10°
o= (8- 1) gt g = A, (13 A e
B—2)'(n+2B-3) FIG. 3. The degree distribution fg=2.1 andN=2'* (dot-
dashedl 26 (dashed and 28 (solid). The dotted line is the shape at
but the generated graphs are now nondegenerate with loopgfinite N. The cutoff scales like fop=3 (see the next figuie
instead of treedgthe graphs are also, in general, not con-Since the distribution is normalized to unity, this results in a devia-
nected. Since(n)=2, we also set =N. We have chosen tion of its shape from the asymptotic one.
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PI'I N—1 Nn n2
10_2 Wnon—deg(;n)— “Hex - m . (17)
10 The ratio is[18]
2
n
107 V\/non—deg(\/vdegoc ex;{ T ON/C (18)
10° . .
Hence, the entropy of the nondegenerate graphs is dramati-
P 16‘ 162 0 cally reduced compared to that of graphs with degeneracies
n

and this reduction depends stronglyrmrThis is the origin of

FIG. 4. The degree distribution fg8=3.0 andN=214 (dot-  the bias mentioned in Sec. II.
dashed} 26 (dashed] and 28 (solid). The dotted line is the shape at ~ SUPPOse we have generated a very large sample of scale-
infinite N. free graphs without any care for degeneracies. For each such

graph the histogram of degrees contains a tail of sparsely
éocated columns of unit height. However, we know, because

Let n>1 be the degree of a node in the tail, so that ther ¢ th ) he balls-in-b del that the hi
is no more than one node of that degree. We consider th& the mapping on the balls-in-boxes model, that the histo-

ensemble of degenerate graphs and we estimate the fractigh@m for the whole sample has the shape pgf for n

of graphs where the node in question has no self-connectioris 'max- Now, what happens when we exclude degeneracies,

or multiple connection. The counting is easily performed byspecifically when we check Whgther a node in_ the tail of th_e
—~ histogram does have the forbidden connections? Equation

considering the symmetric adjacency matdy =#links ij (18) tells us that the rejection rate is nonuniforrmiand that

(every undirected link contributes to two elements Q). nearlv all candidate araphs will be reiected wheis large
Obviously, C;; is 0 or 1 for nondegenerate graphs, but Cancompyared td\Il/Iz grapns wi J Wi g

take any integer value for degenerate onesnhbe the label Thus, to the extent one can neglect the fluctuations of

%fé)ur_hub. We count the adjacency matrices SatiSfyinggraph weights, the degree distribution in nondegenerate
j J'm_r;(' he limi IN fixed andn/ graphs is expected to be cut by an additional factor, roughly
We take the limitN,L —c°, L/N fixed andn/N—0 [no- behaving like exptn?/2N). In the absence of dynamical

tice that i.t _is not assumed thatis kept _fixed wherN in- correlations and fog<3 the cutoff in nondegenerate graphs
creases, it is only less than the cutoff given by Ep)]. In expected to scale lik'? and not like the rhs of Eq12),

this limit, the number of degenerate graphs we are interested. . :
S P I-e., independently of3. Imposing nondegeneracy one gen-
in is proportional to the number of ways to placelements b y op b g 9 y g

in N cell ibl ttin veral elements in th m "erates, at finitéN, parasite correlations whose manifestation
Cells, possibly putling several elements € Same Cellq ihe violation of Eq(12). Notice that this entropy argument

The standard fomula of combinatorics does not apply be- : s
cause one has to take care of the contribution of the symmﬁ—Oes not apply to trees, which within the full graph ensemble

try factors to graph weights. The number of graphs correcte :xg ?hgﬁaor%nv?:;r;i?% %ng?{siﬂ?bvg:;h' as showfijn
by the appropriate weights is '

The conclusion of this section is that our algorithm is
efficient in generating all classes of graphs for any given
1 1 N degree distribution. In the specific, but most interesting case,
Weed M) =2, TH W5<2 ki‘”) (14 of the maximally random nondegenerate scale-free graphs
tgh 28m g Kgr =t whose degree distribution falls like #, with 3<3, the tail
of the degree distribution is cut a,,,,~NY2 This effect
1 o o inat (N—1/2)di® prevents the finite networks from fully developing the large
:Ef dae'“e ' part of the tail of theira priori expected degree distribution.
(15) This is a feature of the model, a result of the absence of
dynamical correlations, and not a failure of the algorithm
[29].
It is known that nodes are correlated in some growing
network models with a scale-free behavid7]. Here we

wherek;j=C;,,. There is a self-connection whég,>0 and
a multiple connection when, fgr#m, k;>1. The symme-

try fgct%s aFre those melntlovnvedhat the pllace(;/:/%ere ;/_ve SUMnd, independently of any specific model, that dynamical
marize the Feynman rules. Ve have replaceddafienction ., o |iions seem to be needed for some networks With

by |t_s Fourier transform and pgrformeq the_mdependent SUM5 to be observed in the real world. We also observe that
mations ovek; . Saddle-point integration yields

the thermodynamic limitN—c of the maximum entropy
graph model can be rather nonuniform and therefore some-
what tricky.

n
Weed 1) - (16)
IV. SUMMARY AND CONCLUSION

A similar counting of graphs where our node is neither There is much activity in producing new growing network
self- nor multiply-connected yields models. Such models are invaluable for illustrating some ba-
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sic dynamical mechanisms, like the preferential attachment We have studied in detail the behavior of the degree dis-
rule[21]. However, in order to understand the generic geomdribution of finite-size graphs. In the absence of dynamical
etries of wide classes of networks it is perhaps worthwhile tdnter-node correlations, for generic scale-free nondegenerate
adopt a complementary approach, consistently defining thgraphs(but not treepthis distribution is cut at
corresponding statistical ensembles and working with these
static ensembles using the standard tools of equilibrium sta- Y o mi _
tistical mechanics. ’ | MmN, y=min1/2,1{A=1)] 9

With this motivation in Ref[1] we have defined a statis- ) o
tical ensemble for an arbitrary node degree distribution. Thigt asymptotically largeN. It appears that a fat tail witl
ensemble is the most random possible, but clearly not thEather close to 2 observed in some data could hardly show up
most general: we assumed that node degrees are indepéhdyn'ammal |nterr_10de correlat|ons_were absent. And_lndeed,
dent, to the extent that this is possible when the number ofiontrivial correlations are present in models of growing net-
nodes and links is fixed. In RefL] we have rapidly focused Works using the preferential attachment redipé].
on trees, indicating, however, that the approach extends to It is certainly very important to develop a theory of cor-
more complicated graphs. The discussion of the ensemble &¢lated networks. Other authof8,4] have very recently
nondegenerate graphs, those without multiple-connection@ade interesting explicit proposals in that direction. Our ap-
and self-connections, has been postponed. The present pajépach can also be rather easily generalized to include dy-
completes Ref[1]. namical correlanns._Thls does not mean thatghgsicsof _

In particular, we have constructed here an efficient a|gocorrelated networks is transparent to us at the present time.
to generate nondegenerate random graphs. We are ready&gother publication.
share our computer code with interested people, on request.

Another simple algorithm has been proposed in Refs.
[6,11] and used subsequently: one first generates from a
given distributionp, a set of node degreds;}, and uses We wish to acknowledge our friend and collaborator the
these numbers to construct auxiliary graphs, each with onkate Joao D. Correia. This work was partially supported by
node andn; half-links. In the second step one connects thethe EC IHP Grant No. HPRN-CT-1999-000161 and by
half-links at random. The resulting graph is usually degenerProject 2 PO3B 096 22 of the Polish Research Foundation
ate [22]. Imposing the absence of degeneracies is in thigKBN) for 2002-2004. Z.B. thanks the Alexander von Hum-
approach very tedious, especially that a nondegenerate grapbldt Foundation. Laboratoire de Physique @tigue is
may just not exist for a given sén;}. Unite Mixte du CNRS UMR 8627.
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