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Uncorrelated random networks
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We define a statistical ensemble of nondegenerate graphs, i.e., graphs without multiple-connections and
self-connections between nodes. The node degree distribution is arbitrary, but the nodes are assumed to be
uncorrelated. This completes our earlier publication@Phys. Rev.64, 046118~2001!# where trees and degenerate
graphs were considered. An efficient algorithm generating nondegenerate graphs is constructed. The corre-
sponding computer code is available on request. Finite-size effects in scale-free graphs, i.e., those where the
tail of the degree distribution falls liken2b, are carefully studied. We find that in the absence of dynamical
internode correlations the degree distribution is cut at a degree value scaling likeNg, with g5min@1/2,1/(b
21)#, whereN is the total number of nodes. The consequence is that, independently of any specific model, the
internode correlations seem to be a necessary ingredient of the physics of scale-free networks observed in
nature.

DOI: 10.1103/PhysRevE.67.046118 PACS number~s!: 05.10.2a, 05.40.2a, 87.18.Sn
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I. INTRODUCTION

This paper is a direct continuation of Ref.@1#. The impor-
tance of defining statistical ensembles of random graph
order to understand the geometry of wide classes of netw
independently of any specific model was emphasized th
Concepts borrowed from field theory were used to define
ensemble of uncorrelated graphs, and an algorithm gen
ing such graphs was proposed. The general philosophy o
approach was illustrated by focusing on a graph sub
semble, namely, on an ensemble of connected trees w
scale-free degree distribution, where a number of hopef
interesting analytic results could be presented. But it sho
have been obvious that the adopted framework is of m
broader applicability. Actually, we have explicitly stated th
our algorithm generates efficiently not only trees, but a
so-called pseudographs, called degenerate graphs in Ref@1#.
However, we have also indicated that we encountered p
lems dealing with simple~i.e., nondegenerate! graphs. Hence
the discussion of these nondegenerate graphs was postp
We are now returning to the problem of defining the stati
cal ensembles of networks, which in the meantime has
tracted the attention of other researchers@2–5# ~at this point
is it fair to mention also Ref.@6#, an early paper on uncorre
lated graphs!.

Although some overlap with Ref.@1# is unavoidable, if
this paper is to be self-contained, we would like to reduce
overlap to a minimum. The reader is invited to consult R
@1# when he finds the discussion of this paper too sketch

We shall not dwell much in introducing the subject. Let
recall that a graph is just a collection of nodes~vertices!
connected by links~edges!. It is a mathematical idealization
representing the various networks one encounters in na
in social life, in engineering, etc. Quite often the pattern
connections between nodes looks fairly random. The con
of a random graph emerges quite naturally.

Random graphs are interesting in themselves. There e
a classical theory of random graphs, a beautiful piece of p
1063-651X/2003/67~4!/046118~7!/$20.00 67 0461
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mathematics@7#. It turns out, however, that most large grap
one encounters in applications are not covered by this the
The access—relatively recent—to the corresponding d
triggered a rather intense activity~see Refs.@8,9# and refer-
ences therein!.

Networks are also interesting considered from a broa
perspective: it is useful to represent the architecture, so
say the skeleton of many complex systems by an approp
network. Hence, graphs are in a sense a gateway to
theory of complex systems, an exciting and promising n
direction of research.

The plan of this paper is as follows: In Sec. II we rec
the definition of the ensemble of uncorrelated random gra
and we discuss the algorithm generating the graphs. In
III we present the results of a sample of computer simu
tions, aimed to help understanding finite-size effects. T
latter play a very important role as soon as the degree di
bution has a fat tail. We explain the behavior of the da
using an analytic argument. We conclude in Sec. IV. F
definiteness, we consider undirected graphs only, as in
@1#.

II. DEFINING THE ENSEMBLE

Let us recall the construction proposed in Ref.@1#. The
partition function for the ensemble of random graphs is w
ten as the formal integral defining a minifield theory

Z5E
2`

1`

df expH 1

k F2f2/2l1g(
n51

`

pnfnG J . ~1!

It will be seen that the non-negative constantspn correspond
to the degree distribution, while the auxiliary constantsg, l,
andk control the dependence ofZ on the number of nodes
links, and loops, respectively. The integral does not exist,
Z can be treated formally as a generating function in
Gaussian perturbation theory. The main idea is to expand
exponential under the integral in Eq.~1! in powers ofg,
©2003 The American Physical Society18-1



-

ic
d

a
o
ue
yn

ll
n
i

d
n-
e
in

t

o
e-

io

el

f
I

:

m

oy
l
ap
ar
h
tl
ei
o

s
r,

.e.,
cted

ght-

e
dy-

h
-
ical

d.
rate
ey
the
is
is,

en-

all
the
o-
not
f.
hen
s is
, to

the
hs
s
and

traint
eri-
em
lly

of
elf-

is
atic
ss.

oc-

e

Z. BURDA AND A. KRZYWICKI PHYSICAL REVIEW E 67, 046118 ~2003!
Z5E df expH 1

k
@2f2/2l#J F11

g

k (
n

pnfn

1
1

2! S g

k D 2

(
n,m

pnpmfn1m1•••G , ~2!

to get a series ing with well defined coefficients, viz. inte
grals with the Gaussian measure of integer powers off.
Each such integral is equal to a sum of contributions, wh
can be represented graphically by the so-called Feynman
grams@10#. We have explained in Ref.@1# how such a dia-
gram emerges, using a particular example. We do not h
enough space to develop the point in more details. For th
readers who are not conversant with field theory techniq
we list the rules for constructing and calculating the Fe
man diagrams corresponding to the term of orderO(gN) in
Eq. ~2!.

Each diagram hasN labeled nodes. One should draw a
topologically distinct diagrams, distributing degrees amo
nodes in all possible manners and connecting nodes pairw
Self-connections and multiple connections between no
are allowed. Notice the similarity with the Molloy-Reed co
struction @11#. With each diagram is associated a numb
called the Feynman amplitude, determined by the follow
rules: each node of degreen contributes a factor (g/k)pnn!
and each link contributes a factorkl. There is a symmetry
factor 1/2 associated with every line connecting a node
itself and a symmetry factor 1/m! associated with every
m-tuple connection between nodes@12#. There is also a fac-
tor Z0 /N!, the factorial being a remnant of the expansion
an exponential andZ0 being the value of the Gaussian int
gral.

Finally, the series representation of the partition funct
reads

Z5Z0(
L,N

gN

N!
kL2NlL(

D

1

S~D !)j 51

N

pnj
nj !, ~3!

where one sums over labeled diagramsD having a fixed
number of nodes and links, respectively,N and L. S(D) is
the product of factors 2 and factorials associated with s
connections and multiple connections andnj is the degree of
the j th node. One can show that the analogous series
logZ receives contributions of connected diagrams only.
this case the expansion in powers ofk is a loop expansion
the leading term corresponds toL5N11 and comes from
tree diagrams, the next term comes from one-loop diagra
etc.

Our idea is to identify the Feynman diagrams of the t
model defined by Eq.~1! with the graphs of a statistica
ensemble. Indeed, Feynman diagrams are identical to gr
familiar to network community people, except that there
definite rules to calculate the corresponding weights. T
minifield formulation enables one to summarize compac
the content of the model and has also the advantage of b
a good starting point for analytical calculations, like those
Ref. @1#.
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In the following, we always work with graph ensemble
whereN and L are fixed. Hence, up to an irrelevant facto
the weightw of a labeled graph that is nondegenerate, i
such that nodes are neither multiply connected nor conne
to themselves, is just

w;)
j 51

N

pnj
nj !. ~4!

In the presence of degeneracies one has to multiply the ri
hand side~rhs! of Eq. ~4! by the factorS21 appearing in Eq.
~3!.

Equation~4! gives the weight of a microstate. Notice th
factorized form and therefore the absence of nontrivial,
namical correlations. Notice also that with the choicepn
}(const)n/n! all nondegenerate graphs with the sameN and
L are equiprobable, because

(
j

nj52L. ~5!

Thus, with a Poissonianpn one recovers the classical grap
ensemble of Erdo¨s and Re´nyi. The ensemble under discus
sion is the most conservative generalization of the class
ensemble to the case of an arbitrary degree distribution.

At this point the statistical ensemble is basically define
However, in this paper, we wish to focus on nondegene
graphs, which are the primary objects in graph theory. Th
correspond to a subensemble of Feynman diagrams. In
conventional applications of field theory no specific recipe
formulated to single these diagrams out. Such a recipe
however, needed here. Otherwise our definition of the
semble would be too vague to be useful in applications.

Before going farther let us outline the strategy we sh
follow: as stated above, our goal is now to complete
definition of the ensemble by the construction of an alg
rithm generating nondegenerate graphs. But we do
achieve this goal directly. First we construct, following Re
@1#, an algorithm generating graphs that are degenerate. T
we show that the ensemble of these degenerate graph
isomorphic, as far as the degree distribution is concerned
the known model of balls-in-boxes@14#. Using this mapping
of one model on another we conclude that asymptotically
degree distributionPn in the ensemble of degenerate grap
is just pn :Pn→pn for N→`. Since we suspect that in thi
limit the degree distributions are the same for degenerate
nondegenerate graphs, we impose the appropriate cons
on the algorithm and perform a sample of computer exp
ments, to be described in Sec. III. The results might se
surprising at first sight, but a clear picture eventua
emerges when we estimate analytically, in the ensemble
degenerate graphs, the likelihood that a node is neither s
nor multiply-connected.

In a growing network model the construction of graphs
recursive and mimics a real physical process. In a st
model like ours one does not refer to any physical proce
An ensemble is defined and the relative frequency of
curence of distinct graphs is fixed: If graphsA and B have
weights P(A) and P(B), respectively, then they should b
8-2
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UNCORRELATED RANDOM NETWORKS PHYSICAL REVIEW E67, 046118 ~2003!
generated with a relative frequency equal toP(A)/P(B).
Naively, one could imagine generating graphs uniformly
the space of graphs, accepting graphA, say, with probability
P(A). However, such a uniform sampling is in practice ve
difficult to insure. Furthermore, in an ensemble of very ma
graphs the acceptance rate of the naive algorithm would
very small, since the normalized weight of any given gra
is roughly speaking of the order of the inverse of the num
of graphs. A clever idea is to introduce an appropri
random walk ~Markov process! in the space of graphs
. . . →Ak→Ak11→Ak12→ . . . , which performs an impor-
tance sampling. The random walk is driven by the Marko
ian transition matrixP(A→B). One can easily show that i
the transition matrix fulfills the detailed balance condition

P~A!P~A→B!5P~B!P~B→A! ~6!

the frequency of the configurationAk in the Markov process
is proportional toP(Ak), provided one has moved awa
from the initial configuration. There are manyP(A→B) ful-
filling the detailed balance condition for a given probabil
measure$P(A),;A%. One is free to choose any one. Th
simplest and popular choice

P~A→B!5min$1,P~B!/P~A!% ~7!

is usually referred to as the Metropolis algorithm@13#. The
general idea of the method is problem independent. H
ever, the choice of the proposed new configurationB, given
the current oneA, is made by taking into account the partic
larities of the problem at hand. Usually one proposes
change only slightly a small number of parameters in
current configuration. This insures a reasonable accept
rate and minimizes the risk of performing time consumi
calculation for nothing.

The transitionA→B logically involves two steps: one
proposesB among all candidates and one accepts the p
posal with a certain probability. One can writeP(A→B) as a
product of the probabilityPc of choosing a particular candi
date and of the probabilityPa of accepting it:P(A→B)
5Pc(A→B)Pa(A→B).

Our algorithm@1# works as follows. In the current con
figuration a random oriented linkiW j , the candidate for rewir-
ing, is chosen. This is done with the probability 1/2L. Then
we select a vertexk, with the probability 1/N. The proposed
move consists of rewiringiW j into iWk. Thus, P(A→B)
51/2LNPa(A→B), and similarly forA↔B. Inserting this
into the detailed balance condition and dropping the fac
1/2LN, identical on both sides of the equation, we obtain

P~A!Pa~A→B!5P~B!Pa~B→A!, ~8!

which has the Metropolis solution forPa(A→B). Now, we
use the fact that, according to Eq.~4!, P(A) is a product of
the node weightspnn!. Furthermore, we observe that th
rewiring changesnk→nk11 and nj→nj21 only, leaving
the degrees of other nodes intact, to get
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Pa~A→B!5minH 1,
~nk11!! pnk11~nj21!! pnj 21

nk! pnk
nj ! pnj 21

J
5min$1,~nk11!R~nk11!/njR~nj !%, ~9!

whereR(n)5pn /pn21. Whennj51, the attempt is rejected
so that nodes with zero degree are never created. Notice,
we directly sample links to be rewired. The graphs produc
by this algorithm are in general degenerate and multiply c
nected. It turns out that the detailed balance condition
the way of sampling links insure that the symmetry factors
the weights of degenerate graphs come out correctly.

The presence of the factor (nk11)/nj , on the rhs of Eq.
~9! means that the rewired nodes are sampled independe
of their degree@15#. Furthermore, the rewiring depends o
the node degrees only and is insensitive to the rest of
underlying graph structure. Hence, as far as the distribu
of node degrees is concerned, the model is isomorphic to
well known balls-in-boxes model@14#, defined by the parti-
tion function

z}(
$nj %

pn1
•••pnN

dS M2(
j 51

N

nj D , ~10!

and describingM balls distributed with probabilitypn among
N boxes~in our caseM52L). The constraint represented b
the Kronecker delta on the rhs of Eq.~10! is satisfied ‘‘for
free’’ whenN→` by virtue of Khintchin’s law of large num-
bers, provided̂ n&5(nnpn /(npn5M /N. The finiteness of
^n& is always tacitly assumed in this paper. Hence, when
last condition is met the occupation number distribution o
single boxPn→pn for N→`.

Consequently, in the statistical ensemble, including
generate graphs, the degree distribution becomespn asymp-
totically when the number of links is set to

L5
1

2
N^n&. ~11!

When this condition is not met, the asymptotic degree dis
bution differs frompn , which is, in a sense, renormalized.
particular, whenL is smaller, this distribution ispn times an
exponentially falling factor. WhenL is larger the situation
depends on the shape ofpn . When the latter is scale free
pn}n2b for largen, the distribution is}pn , except that an
extra singular node with degree of orderO(N) shows up.
These phenomena were discussed at length in the conte
the balls-in-boxes model@14#, and also in our preceding
work @1#.

So far, only an algorithm generating degenerate gra
has been constructed. It is trivial to convert it into an alg
rithm producing nondegenerate graphs. It suffices for tha
add before the Metropolis test a few lines of code check
that the nodesi andk are neither identical nor linked. How
ever, this check introduces a bias and it is not obvious w
will be the degree distribution at finiteN.
8-3
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A priori, the Metropolis test should insure that the numb
of nodes of degreen is close toNpn , provided the last num-
ber is large enough. And for fixedn it can be made arbitrarily
large with a proper choice ofN. Hence, a possible deviatio
of the degree distribution frompn should be a finite size
effect disappearing in the limitN→` when the couplingspn
are defined on a finite support. However, one has a prob
whenpn has a fat tail.

Let the degree distribution fall liken2b, b.2. For finite
N it cannot fall like that indefinitely, there is a natural cuto
scaling as

nmax}N1/(b21). ~12!

The argument is well known: the expected number of no
with n.nmax is less than unity. The presence of this cut
was used by Dorogovtsevet al. @16# to explain why the ob-
served scale-free networks are always characterized b
relatively smallb.

Hence, coming back to the algorithm, there is alway
range ofn where fluctuations in the number of nodes a
very large. IncreasingN does not help. Now, if certain fluc
tuations are systematically favored by the constraint exc
ing degeneracies, then the resulting degree distribution
strongly deviate from the input weightspn . We dedicate a
separate section to the discussion of this problem.

III. FINITE-SIZE GRAPHS: DEGREE DISTRIBUTION

Let us first consider a case where the support ofpn is
finite, in order to check that in this case the problem is
deed under control. We perform a numerical experiment,
ting for definitenesspn51/10 for n<10 andpn50 other-
wise, whileL52.75N as dictated by Eq.~11!. The result is
shown in Fig. 1: as expected, the convergence of the de
distribution towards the input one is very fast.

Our next experiment is with scale-free graphs. As in R
@1# we set@17#

pn5~b21!
G~2b23!G~n1b23!

G~b22!G~n12b23!
}n2b, ~13!

but the generated graphs are now nondegenerate with lo
instead of trees~the graphs are also, in general, not co
nected!. Since^n&52, we also setL5N. We have chosen

FIG. 1. The approach towards the limiting rectangular shape
the calculated connectivity distributionPn : N5100 ~squares! and
1000 ~circles!. The figure illustrates the claim that finite size co
rections fade away rapidly when the input connectivity distribut
has a finite support.
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this example to illustrate a behavior which, as we shall arg
in a moment, is generic. Since the same choice was mad
Ref. @1#, the reader can directly compare the results obtai
in the two ensembles studied.

The maximum node degreenmax has been measured i
long runs. The results, forb52.1 and 3.0, are shown in Fig
2. The important point is that the rate of increase ofnmax
with N is almost the same for the two values ofb, contrary
to what one can read from the rhs of Eq.~12!. The exponent
is slightly below the value 1/2, expected asymptotically~see
below!. The autocorrelation time increases roughly at t
same rate, from about 860~1810! to 5460 ~10300! sweeps
for b52.1 ~ 3.0!; in a sweep one attempts to rewire all theL
links of the graph. The fraction of nodes and links belongi
to the giant component decreases very slowly from ab
0.57 and 0.78~0.68 and 0.81! at N5214 to 0.55 and 0.77
~0.68 and 0.81! at N5218.

The shape and the evolution withN of the degree distri-
bution is shown in Figs. 3 and 4. It is manifest that t
distribution does approach the expected limit. However,
approach is very slow and nonuniform, especially forb
52.1. The results of the computer experiment can be un
stood using the following heuristic arguments.

f

FIG. 2. The evolution withN of the average maximum degree o
a graph forb52.1 ~circles! and 3.0~squares! andN5213–218. This
log-log plot illustrates the observation that for scale-free gra
with the exponentb approaching 2, the maximum node degr
evolves withN at a rate close to that observed forb53, in variance
with Eq. ~12!. An analytic argument explaining the observed beha
ior is given in the text.

FIG. 3. The degree distribution forb52.1 andN5214 ~dot-
dashed!, 216 ~dashed!, and 218 ~solid!. The dotted line is the shape a
infinite N. The cutoff scales like forb53 ~see the next figure!.
Since the distribution is normalized to unity, this results in a dev
tion of its shape from the asymptotic one.
8-4
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Let n@1 be the degree of a node in the tail, so that th
is no more than one node of that degree. We consider
ensemble of degenerate graphs and we estimate the fra
of graphs where the node in question has no self-connect
or multiple connection. The counting is easily performed
considering the symmetric adjacency matrixCi j 5#links i jW
~every undirected link contributes to two elements ofC).
Obviously,Ci j is 0 or 1 for nondegenerate graphs, but c
take any integer value for degenerate ones. Letm be the label
of our hub. We count the adjacency matrices satisfy
( jCjm5n.

We take the limitN,L→`, L/N fixed andn/N→0 @no-
tice that it is not assumed thatn is kept fixed whenN in-
creases, it is only less than the cutoff given by Eq.~12!#. In
this limit, the number of degenerate graphs we are intere
in is proportional to the number of ways to placen elements
in N cells, possibly putting several elements in the same c
The standard fomula of combinatorics does not apply
cause one has to take care of the contribution of the sym
try factors to graph weights. The number of graphs correc
by the appropriate weights is

Wdeg~n!5(
$kj %

1

2km
)

j

1

kj !
dS (

i 51

N

ki2nD ~14!

5
1

2pE da eia e2 ina1(N21/2)eia
,

~15!

wherekj[Cjm . There is a self-connection whenkm.0 and
a multiple connection when, forj 5” m, kj.1. The symme-
try factors are those mentioned at the place where we s
marize the Feynman rules. We have replaced thed function
by its Fourier transform and performed the independent s
mations overkj . Saddle-point integration yields

Wdeg~n!}
Nn

n!
. ~16!

A similar counting of graphs where our node is neith
self- nor multiply-connected yields

FIG. 4. The degree distribution forb53.0 andN5214 ~dot-
dashed!, 216 ~dashed!, and 218 ~solid!. The dotted line is the shape a
infinite N.
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Wnon-deg~n!5S N21

n D}
Nn

n!
expS 2

n2

2ND . ~17!

The ratio is@18#

Wnon-deg/Wdeg}expS 2
n2

2ND . ~18!

Hence, the entropy of the nondegenerate graphs is dram
cally reduced compared to that of graphs with degenera
and this reduction depends strongly onn. This is the origin of
the bias mentioned in Sec. II.

Suppose we have generated a very large sample of s
free graphs without any care for degeneracies. For each
graph the histogram of degrees contains a tail of spar
located columns of unit height. However, we know, becau
of the mapping on the balls-in-boxes model, that the his
gram for the whole sample has the shape ofpn for n
,nmax. Now, what happens when we exclude degenerac
specifically when we check whether a node in the tail of
histogram does have the forbidden connections? Equa
~18! tells us that the rejection rate is nonuniform inn and that
nearly all candidate graphs will be rejected whenn is large
compared toN1/2.

Thus, to the extent one can neglect the fluctuations
graph weights, the degree distribution in nondegene
graphs is expected to be cut by an additional factor, roug
behaving like exp(2n2/2N). In the absence of dynamica
correlations and forb<3 the cutoff in nondegenerate graph
is expected to scale likeN1/2 and not like the rhs of Eq.~12!,
i.e., independently ofb. Imposing nondegeneracy one ge
erates, at finiteN, parasite correlations whose manifestati
is the violation of Eq.~12!. Notice that this entropy argumen
does not apply to trees, which within the full graph ensem
have a nearly vanishing entropy and which, as shown in@1#,
have their own mapping on balls-in-boxes.

The conclusion of this section is that our algorithm
efficient in generating all classes of graphs for any giv
degree distribution. In the specific, but most interesting ca
of the maximally random nondegenerate scale-free gra
whose degree distribution falls liken2b, with b,3, the tail
of the degree distribution is cut atnmax;N1/2. This effect
prevents the finite networks from fully developing the lar
part of the tail of theira priori expected degree distribution
This is a feature of the model, a result of the absence
dynamical correlations, and not a failure of the algorith
@19#.

It is known that nodes are correlated in some grow
network models with a scale-free behavior@17#. Here we
find, independently of any specific model, that dynami
correlations seem to be needed for some networks witb
'2 to be observed in the real world. We also observe t
the thermodynamic limitN→` of the maximum entropy
graph model can be rather nonuniform and therefore so
what tricky.

IV. SUMMARY AND CONCLUSION

There is much activity in producing new growing netwo
models. Such models are invaluable for illustrating some
8-5
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Z. BURDA AND A. KRZYWICKI PHYSICAL REVIEW E 67, 046118 ~2003!
sic dynamical mechanisms, like the preferential attachm
rule @21#. However, in order to understand the generic geo
etries of wide classes of networks it is perhaps worthwhile
adopt a complementary approach, consistently defining
corresponding statistical ensembles and working with th
static ensembles using the standard tools of equilibrium
tistical mechanics.

With this motivation in Ref.@1# we have defined a statis
tical ensemble for an arbitrary node degree distribution. T
ensemble is the most random possible, but clearly not
most general: we assumed that node degrees are inde
dent, to the extent that this is possible when the numbe
nodes and links is fixed. In Ref.@1# we have rapidly focused
on trees, indicating, however, that the approach extend
more complicated graphs. The discussion of the ensemb
nondegenerate graphs, those without multiple-connect
and self-connections, has been postponed. The present
completes Ref.@1#.

In particular, we have constructed here an efficient al
rithm, easily implemented on a computer, which enables
to generate nondegenerate random graphs. We are rea
share our computer code with interested people, on requ

Another simple algorithm has been proposed in Re
@6,11# and used subsequently: one first generates from
given distributionpn a set of node degrees$nj%, and uses
these numbers to construct auxiliary graphs, each with
node andnj half-links. In the second step one connects
half-links at random. The resulting graph is usually degen
ate @22#. Imposing the absence of degeneracies is in
approach very tedious, especially that a nondegenerate g
may just not exist for a given set$nj%.
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We have studied in detail the behavior of the degree d
tribution of finite-size graphs. In the absence of dynami
inter-node correlations, for generic scale-free nondegene
graphs~but not trees! this distribution is cut at

nmax}Ng, g5min@1/2,1/~b21!# ~19!

at asymptotically largeN. It appears that a fat tail withb
rather close to 2 observed in some data could hardly show
if dynamical internode correlations were absent. And inde
nontrivial correlations are present in models of growing n
works using the preferential attachment recipe@17#.

It is certainly very important to develop a theory of co
related networks. Other authors@3,4# have very recently
made interesting explicit proposals in that direction. Our a
proach can also be rather easily generalized to include
namical correlations. This does not mean that thephysicsof
correlated networks is transparent to us at the present t
We shall hopefully return to the problem of correlations
another publication.
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